Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 974
Filtrar
1.
Skin Res Technol ; 30(4): e13666, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38606717

RESUMO

BACKGROUND: It is known that heparinoid, a mucopolysaccharide polysulfate, is effective in improving rough skin and promoting blood circulation as medicines for diseased areas. However, heparinoid has a molecular weight of more than 5000 and cannot penetrate healthy stratum corneum. OBJECTIVE: We tested the efficacy of sulfated oligosaccharides with a molecular weight of less than 2000 on the human skin barrier function and moisturizing function. METHODS: We measured the transepidermal water loss (TEWL) of a three-dimensional human epidermis model cultured for 3 days after topical application of sulfated oligosaccharides, then observed the effects on TEWL suppression. The mRNA levels of proteins involved in intercellular lipid transport and storage in the stratum corneum, and moisture retention were measured using RT-qPCR. RESULTS: An increase in the mRNA levels of the ATP-binding cassette subfamily A member 12 (ABCA12), which transports lipids into stratum granulosum, was confirmed. Increases were also observed in the mRNA levels of filaggrin (FLG), which is involved in the generation of natural moisturizing factors, and of caspase-14, calpain-1 and bleomycin hydrolase, which are involved in the degradation of FLG. Antibody staining confirmed that the application of sodium trehalose sulfate to 3D model skin resulted in more ABCA12, ceramide, transglutaminase1, and FLG than those in controls. In a randomized, placebo-controlled, double-blind study, participants with low stratum corneum water content applied a lotion and emulsion containing sodium trehalose sulfate to their faces for 4 weeks. Sodium trehalose sulfate decreased the TEWL and increased the stratum corneum water content. CONCLUSION: These results suggest that cosmetics containing sodium trehalose sulfate act on the epidermis by increasing barrier factors and moisturizing factors, thereby ameliorating dry skin.


Assuntos
Heparinoides , Trealose , Humanos , Trealose/farmacologia , Trealose/metabolismo , Heparinoides/metabolismo , Heparinoides/farmacologia , Pele/metabolismo , Epiderme/metabolismo , Higiene da Pele , Água/metabolismo , RNA Mensageiro/metabolismo , Sódio/metabolismo , Sódio/farmacologia
2.
Int J Biol Macromol ; 262(Pt 1): 129928, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38309393

RESUMO

Trehalase has attracted widespread attention in medicine, agriculture, food, and ethanol industry due to its ability to specifically degrade trehalose. Efficient expression of trehalase remains a challenge. In this study, a putative trehalase-encoding gene (Tre-zm) from Zunongwangia mangrovi was explored using gene-mining strategy and heterologously expressed in E. coli. Trehalase activity reached 3374 U·mL-1 after fermentation optimization. The scale-up fermentation in a 15 L fermenter was achieved with a trehalase production of 15,068 U·mL-1. The recombinant trehalase TreZM was purified and characterized. It displayed optimal activity at 35 °C and pH 8.5, with Mn2+, Sn2+, Na+, and Fe2+ promoting the activity. Notably, TreZM showed significant inhibition effect on biofilm forming of Staphylococcus epidermidis. The combination of TreZM with a low concentration of antibiotics could inhibit 70 % biofilm formation of Staphylococcus epidermidis and 28 % of Pseudomonas aeruginosa. Hence, this study provides a promising candidate for industrial production of trehalase and highlights its potential application to control harmful biofilms.


Assuntos
Escherichia coli , Trealase , Trealase/química , Escherichia coli/genética , Escherichia coli/metabolismo , Fermentação , Trealose/farmacologia , Trealose/metabolismo , Biofilmes
3.
Microbiol Spectr ; 12(3): e0340423, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38259091

RESUMO

Arbuscular mycorrhizal fungi (AMF) could establish symbiosis with plant roots, which enhances plant resistance to various stresses, including drought stress and salt stress. Besides AMF, chemical stimulants such as trehalose (Tre) can also play an important role in helping plants alleviate damage of adversity. However, the mechanism of the effect of AMF combined with chemicals on plant stress resistance is unclear. The objective of this study was to explore the synergistic effects of Claroideoglomus etunicatum AMF and exogenous Tre on the antioxidant system, osmoregulation, and resistance-protective substance in plants in response to salt stress. Tomato seedlings were inoculated with Claroideoglomus etunicatum and combined with exogenous Tre in a greenhouse aseptic soil cultivation experiment. We measured the arbuscular mycorrhizal symbiont development, organic matter content, and antioxidant enzyme activity in tomato seedlings. Both AMF and Tre improved the synthesis of chlorophyll content in tomato seedlings; regulated the osmotic substance including soluble sugars, soluble protein, and proline of plants; and increased the activity of superoxide dismutase, peroxidase, and catalase. The combination of AMF and Tre also reduced the accumulation of malondialdehyde and alleviated the damage of harmful substances to plant cells in tomato seedlings. We studied the effects of AMF combined with extraneous Tre on salt tolerance in tomato seedlings, and the results showed that the synergistic treatment of AMF and Tre was more efficient than the effects of AMF inoculation or Tre spraying separately by regulating host substance synthesis, osmosis, and antioxidant enzymes. Our results indicated that the synergistic effects of AMF and Tre increased the plant adaptability against salt damage by enhancing cell osmotic protection and cell antioxidant capacity. IMPORTANCE: AMF improve the plant adaptability to salt resistance by increasing mineral absorption and reducing the damage of saline soil. Trehalose plays an important role in plant response to salt damage by regulating osmotic pressure. Together, the use of AMF and trehalose in tomato seedlings proved efficient in regulating host substance synthesis, osmosis, and antioxidant enzymes. These synergistic effects significantly improved seedling adaptability to salt stress by enhancing cell osmotic protection and cell antioxidant capacity, ultimately reducing losses to crops grown on land where salinization has occurred.


Assuntos
Fungos , Micorrizas , Solanum lycopersicum , Micorrizas/fisiologia , Plântula/microbiologia , Trealose/farmacologia , Antioxidantes/metabolismo , Estresse Salino , Plantas/metabolismo , Solo
4.
Int J Biol Macromol ; 260(Pt 1): 129448, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38228204

RESUMO

The acquisition of high quality lyophilized IgY products, characterized by an aesthetically pleasing visage, heightened stability, and a marked preservation of activity, constitutes an indispensable pursuit in augmenting the safety and pragmatic utility of IgY. Within this context, an exploration was undertaken to investigate an innovative modality encompassing microwave freeze-drying (MFD) as a preparatory methodology of IgY. Morphological assessments revealed that both cryogenic freezing and subsequent MFD procedures resulted in aggregation of IgY, with the deleterious influence posed by the MFD phase transcending that of the freezing phase. The composite protective agent comprised of trehalose and mannitol engendered a safeguarding effect on the structural integrity of IgY, thereby attenuating reducing aggregation between IgY during the freeze-drying process. Enzyme-linked immunosorbent assay (ELISA) outcomes demonstrated a discernible correlation between IgY aggregation and a notable reduction in its binding affinity towards the pertinent antigen. Comparative analysis vis-à-vis the control sample delineated that when the trehalose-to-mannitol ratio was upheld at 1:3, a two-fold outcome was achieved: a mitigation of the collapse susceptibility within the final product as well as a deterrence of IgY agglomeration, concomitant with an elevated preservation rate of active antibodies (78.57 %).


Assuntos
Imunoglobulinas , Manitol , Trealose , Congelamento , Trealose/farmacologia , Trealose/química , Manitol/química , Liofilização/métodos
5.
J Ovarian Res ; 17(1): 11, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38195648

RESUMO

The etiology of polycystic ovary syndrome (PCOS) is complex and variable, and there is no exact cause or good treatment method. Most of the methods of hormones are used to temporarily meet the needs of patients. Experimental evidence has shown that trehalose has, anti-apoptotic, anti-oxidative, glucose-lowering, and insulin resistance effects. However, whether trehalose has a therapeutic effect on PCOS is unknown. It has been reported that the ovarian renin-angiotensin system (OVRAS) is involved in the development of PCOS, but it has not been fully elucidated. This study aims to explore the effect of trehalose on PCOS and elucidate the related OVRAS mechanism. We first observed that body weight, estrous cycle, ovarian follicles at all levels, glucose tolerance, serum hormones, and insulin resistance were improved by trehalose treatment in the PCOS mouse model. Moreover, trehalose treatment also ameliorated ovarian oxidative stress and apoptosis in PCOS mice, as determined by TUNNEL apoptosis staining, total SOD in ovarian homogenate, and WB assay. OVRAS mainly involves two classic pathways, namely the ACE/AngII/AT1R/AT2R, and ACE2 / Ang1-7/ MASR, Which play different functions. In PCOS mouse ovaries, we found that ACE/AngII/AT1R was up-regulated and ACE2/Ang1-7/MASR and AT2R were down-regulated by PCR and WB experiments, However, trehalose treatment changed its direction. In addition, we also found that trehalose ameliorated DHEA-induced oxidative stress and apoptosis in KGN by PCR and WB experiments, mainly by down-regulating ACE/AngII/AT1R. Our study shows that trehalose improves symptoms of PCOS mainly by down-regulating ACE/AngII/AT1R, revealing a potential therapeutic target for PCOS.


Assuntos
Resistência à Insulina , Síndrome do Ovário Policístico , Humanos , Feminino , Animais , Camundongos , Síndrome do Ovário Policístico/tratamento farmacológico , Sistema Renina-Angiotensina , Enzima de Conversão de Angiotensina 2 , Trealose/farmacologia , Apoptose , Estresse Oxidativo , Glucose , Hormônios
6.
Appl Biochem Biotechnol ; 196(3): 1194-1210, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37378719

RESUMO

Myocardial ischemia/reperfusion (I/R) injury is a pathological damage secondary to myocardial ischemia that can further aggravate tissue and organ injuries. Therefore, there is an urgent need to develop an effective approach for alleviating myocardial I/R injury. Trehalose (TRE) is a natural bioactive substance that has been shown to have extensive physiological effects in various animals and plants. However, TRE's protective effects against myocardial I/R injury remain unclear. This study aimed to evaluate the protective effect of TRE pre-treatment in mice with acute myocardial I/R injury and to explore the role of pyroptosis in this process. Mice were pre-treated with trehalose (1 mg/g) or an equivalent amount of saline solution for 7 days. The left anterior descending coronary artery was ligated in mice from the I/R and I/R + TRE groups, followed by 2-h or 24-h reperfusion after 30 min. Transthoracic echocardiography was performed to assess cardiac function in mice. Serum and cardiac tissue samples were obtained to examine the relevant indicators. We established an oxygen-glucose deprivation and re-oxygenation model in neonatal mouse ventricular cardiomyocytes and validated the mechanism by which trehalose affects myocardial necrosis via overexpression or silencing of NLRP3. TRE pre-treatment significantly improved cardiac dysfunction and reduced the infarct size in mice after I/R, accompanied by a decrease in the I/R-induced levels of CK-MB, cTnT, LDH, reactive oxygen species, pro-IL-1ß, pro-IL-18, and TUNEL-positive cells. Furthermore, TRE intervention suppressed the expression of pyroptosis-related proteins following I/R. TRE attenuates myocardial I/R injury in mice by inhibiting NLRP3-mediated caspase-1-dependent pyroptosis in cardiomyocytes.


Assuntos
Traumatismo por Reperfusão Miocárdica , Camundongos , Animais , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/patologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Trealose/farmacologia , Trealose/uso terapêutico , Piroptose , Espécies Reativas de Oxigênio/metabolismo
7.
Adv Biol (Weinh) ; 8(2): e2300404, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37968550

RESUMO

Trehalose is synthesized in insects through the trehalose 6-phosphate synthase and phosphatase (TPS/TPP) pathway. TPP dephosphorylates trehalose 6-phosphate to release trehalose. Trehalose is involved in metamorphosis, but its relation with body weight, size, and developmental timing is unexplored. The expression and activity of TPS/TPP fluctuate depending on trehalose demand. Thus, TPS/TPP inhibition can highlight the significance of trehalose in insect physiology. TPS/TPP transcript levels are elevated in the pre-pupal and pupal stages in Helicoverpa armigera. The inhibition of recombinantly expressed TPP by N-(phenylthio)phthalimide (NPP), is validated by in vitro assays. In vivo inhibition of trehalose synthesis reduces larval weight and size, hampers metamorphosis, and reduces its overall fitness. Insufficient trehalose leads to a shift in glucose flux, reduced energy, and dysregulated fatty acid oxidation. Metabolomics reaffirms the depletion of trehalose, glucose, glucose 6-phosphate, and suppressed tricarboxylic acid cycle. Reduced trehalose hampers the energy level affecting larval vitality. Through trehalose synthesis inhibition, the importance of trehalose in insect physiology and development is investigated. Also, in two other lepidopterans, TPP inhibition impedes physiology and survival. NPP is also found to be effective as an insecticidal formulation. Overall, trehalose levels affect the larval size, weight, and metabolic homeostasis for larval-pupal transition in lepidoptera.


Assuntos
Lepidópteros , Animais , Larva/metabolismo , Lepidópteros/metabolismo , Trealose/farmacologia , Trealose/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Glucose/metabolismo , Fosfatos/metabolismo
8.
Naunyn Schmiedebergs Arch Pharmacol ; 397(2): 1061-1070, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37581638

RESUMO

Aging is associated with a disturbance in the regulation of the metabolic function of the liver, which increases the risk of liver and systemic diseases. Trehalose, a natural disaccharide, has been identified to reduce dyslipidemia, hepatic steatosis, and glucose intolerance. However, the roles of trehalose on lipid metabolism in aged liver are unclear which was investigated in this study. Thirty-two male Wistar rats were randomly allocated into four groups (n = 8). Two groups of aged (24 months) and young (4 months) rats were administered 2% trehalose solution orally for 30 days. Control groups of aged and young rats did not receive any treatment. At the end of the treatment period, blood samples and liver tissues were collected. Then the expression of SIRT1, AMPK, SREBP-1c, and PPAR-α and the level of AMPK phosphorylation (p-AMPK) were quantified by real-time polymerase chain reaction and western blotting. Moreover, biochemical parameters and the histopathology of livers were evaluated. Trehalose supplementation increased the level of SIRT1, p-AMPK, and PPAR-α, whereas the level of SREBP-1c was diminished in the liver of old animals. In addition, treatment with trehalose improved histopathological features of senescent livers. Taken together, our results show that old rats developed lipogenesis in the liver which was alleviated with trehalose. Therefore, trehalose may be an effective intervention to reduce the progression of aging-induced liver diseases.


Assuntos
Proteínas Quinases Ativadas por AMP , Trealose , Masculino , Ratos , Animais , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Trealose/farmacologia , Trealose/metabolismo , PPAR alfa/genética , Sirtuína 1/genética , Sirtuína 1/metabolismo , Ratos Wistar , Fígado , Metabolismo dos Lipídeos , Lipídeos
9.
J Nanobiotechnology ; 21(1): 472, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38066538

RESUMO

Atherosclerosis, cholesterol-driven plaque formation in arteries, is a complex multicellular disease which is a leading cause of vascular diseases. During the progression of atherosclerosis, the autophagic function is impaired, resulting in lipid accumulation-mediated foam cell formation. The stimulation of autophagy is crucial for the recovery of cellular recycling process. One of the potential autophagy inducers is trehalose, a naturally occurring non-reducing disaccharide. However, trehalose has poor bioavailability due to its hydrophilic nature which results in poor penetration through cell membranes. To enhance its bioavailability, we developed trehalose-releasing nanogels (TNG) for the treatment of atherosclerosis. The nanogels were fabricated through copolymerization of 6-O-acryloyl-trehalose with the selected acrylamide-type monomers affording a high trehalose conjugation (~ 58%, w/w). TNG showed a relatively small hydrodynamic diameter (dH, 67 nm) and a uniform spherical shape and were characterized by negative ζ potential (-18 mV). Thanks to the trehalose-rich content, TNG demonstrated excellent colloidal stability in biological media containing serum and were non-hemolytic to red blood cells. In vitro study confirmed that TNG could stimulate autophagy in foam cells and enhance lipid efflux and in vivo study in ApoE-/- mice indicated a significant reduction in atherosclerotic plaques, while increasing autophagic markers. In conclusion, TNG hold great promise as a trehalose delivery system to restore impaired autophagy-mediated lipid efflux in atherosclerosis and subsequently reduce atherosclerotic plaques.


Assuntos
Aterosclerose , Placa Aterosclerótica , Animais , Camundongos , Placa Aterosclerótica/tratamento farmacológico , Trealose/farmacologia , Trealose/metabolismo , Nanogéis , Aterosclerose/tratamento farmacológico , Aterosclerose/metabolismo , Autofagia , Lipídeos
10.
Ying Yong Sheng Tai Xue Bao ; 34(11): 3021-3029, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37997413

RESUMO

Taking the heat-sensitive wheat variety 'Fanmai 5' (FM5) and the heat-tolerant variety 'Huaimai 33' (HM33), which were screened out in the previous experiments, as experimental materials, we conducted a field experiment with passive heat-enhancing shelters to simulate post-flowering high-temperature environment (average temperature increase of 5.13 ℃) during 2021-2022. During the filling period, we analyzed the effects of exogenous trehalose (10, 15 and 20 mmol·L-1) on the filling characteristics and sugar fraction under high temperature, with no spraying at ordinary temperature as control (CK). The results showed that treating without spraying exogenous trehalose at high temperature (H) significantly reduced wheat grain yield and grain weight during the filling period, and spraying exogenous trehalose alleviated the reduction of grain yield and grain weight at the filling stage under high temperature stress. Compared with the H treatment, grain yield and grain weight of HM33 and FM5 wheat varie-ties increased by 3.5%, 6.7% and 4.2%, 5.4%, respectively. High temperature stress significantly increased the trehalose content and trehalase (THL) activity in flag leaves of both wheat varieties, and decreased the fructose and glucose contents. Spraying exogenous trehalose increased the contents of trehalose, fructose, and glucose in flag leaves, and decreased the trehalase activity in flag leaves compared with H treatment, which could improve the glucose metabolism capacity of wheat at filling stage. The increasing effect of FM5 was higher than that of HM33. High temperature stress significantly reduced starch content of flag leaves and grains, while spraying exogenous trehalose alleviated the decrease of starch content of flag leaves and grains under high temperature stress, which was profit able for the substance accumulation of wheat grains under high temperature stress. Under the conditions of this experiment, spraying 15 mmol·L-1 trehalose at flowering stage was the best treatment for the two wheat varieties.


Assuntos
Açúcares , Triticum , Açúcares/metabolismo , Triticum/metabolismo , Temperatura , Trealose/farmacologia , Trealose/metabolismo , Trealase/metabolismo , Carboidratos , Glucose , Frutose/metabolismo , Amido/metabolismo , Grão Comestível/metabolismo
11.
Cryo Letters ; 44(5): 299-306, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38032310

RESUMO

BACKGROUND: Semen cryopreservation is a complex process during which there is alteration in the expression of sperm and seminal plasma proteins, molecular weight of protein or loss of membrane proteins during the process. In order to compensate for these changes, different membrane stabilizers are used in freezing semen extenders. However, there is scarcity of such studies during cryopreservation of goat semen. OBJECTIVE: To investigate the effect of membrane stabilizers on sperm membrane protein expression during cryopreservation of goat semen. MATERIALS AND METHODS: A total of 36 semen ejaculates from nine Assam Hill Goat bucks aged 2 to 2.5 years was collected by artificial vagina method. Three membrane stabilizers, each at two different concentrations viz. 50 and 80 mM sucrose, 50 and 100 mM trehalose, and 100 and 150 ng per mL IGF-1 (insulin-like growth factor 1 protein) were added to Tris-citric acid fructose egg yolk glycerol (TCFEYG) extender and semen samples were cryopreserved. The sperm membrane protein profile was studied in fresh and cryopreserved semen by SDS-PAGE. RESULTS: SDS- PAGE of sperm membrane extract of fresh semen revealed the presence of 24 protein bands with molecular weights ranging from 10 kDa to 240 kDa. Samples supplemented with 50 mM sucrose and 80 mM sucrose revealed 21 protein bands with molecular weights ranging from 10 kDa to 240 kDa. All the 21 protein bands were same as those observed in the sperm membrane of fresh spermatozoa, except that the 23 kDa, 29 kDa and 42 kDa bands were absent in frozen semen. Similarly, frozen semen extended with 50 mM trehalose and 100 mM trehalose revealed 22 protein bands with molecular weights ranging from 10 kDa to 240 kDa, but lacking the 29 kDa and 42 kDa bands. Proteins with molecular weights of 29 kDa, 130 kDa and 240 kDa were absent in frozen semen supplemented with 100 ng per mL IGF-1 and 150 ng per mL IGF-1. CONCLUSION: The present study revealed that supplementation of tris basic extender with trehalose at 100 mM and or IGF-1 at 100 ng/mL or 150 ng per mL improves the post-thaw semen characteristics and protects certain fertility related sperm membrane proteins. Doi.org/10.54680/fr23510110612.


Assuntos
Análise do Sêmen , Sêmen , Masculino , Feminino , Animais , Fator de Crescimento Insulin-Like I/farmacologia , Cabras , Trealose/farmacologia , Criopreservação/veterinária , Espermatozoides , Proteínas de Membrana , Sacarose/farmacologia
12.
PLoS One ; 18(11): e0294312, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38033125

RESUMO

Lysosomes play important roles in catabolism, nutrient sensing, metabolic signaling, and homeostasis. NPC1 deficiency disrupts lysosomal function by inducing cholesterol accumulation that leads to early neurodegeneration in Niemann-Pick type C (NPC) disease. Mitochondria pathology and deficits in NPC1 deficient cells are associated with impaired lysosomal proteolysis and metabolic signaling. It is thought that activation of the transcription factor TFEB, an inducer of lysosome biogenesis, restores lysosomal-autophagy activity in lysosomal storage disorders. Here, we investigated the effect of trehalose, a TFEB activator, in the mitochondria pathology of NPC1 mutant fibroblasts in vitro and in mouse developmental Purkinje cells ex vivo. We found that in NPC1 mutant fibroblasts, serum starvation or/and trehalose treatment, both activators of TFEB, reversed mitochondria fragmentation to a more tubular mitochondrion. Trehalose treatment also decreased the accumulation of Filipin+ cholesterol in NPC1 mutant fibroblasts. However, trehalose treatment in cerebellar organotypic slices (COSCs) from wild-type and Npc1nmf164 mice caused mitochondria fragmentation and lack of dendritic growth and degeneration in developmental Purkinje cells. Our data suggest, that although trehalose successfully restores mitochondria length and decreases cholesterol accumulation in NPC1 mutant fibroblasts, in COSCs, Purkinje cells mitochondria and dendritic growth are negatively affected possibly through the overactivation of the TFEB-lysosomal-autophagy pathway.


Assuntos
Mitocôndrias , Doença de Niemann-Pick Tipo C , Trealose , Animais , Humanos , Camundongos , Colesterol/metabolismo , Fibroblastos/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Lisossomos/metabolismo , Mitocôndrias/metabolismo , Proteína C1 de Niemann-Pick , Doença de Niemann-Pick Tipo C/tratamento farmacológico , Doença de Niemann-Pick Tipo C/genética , Doença de Niemann-Pick Tipo C/metabolismo , Células de Purkinje/patologia , Trealose/farmacologia
13.
Cryobiology ; 113: 104786, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37863380

RESUMO

Cryopreservation is widely used for the long-term storage of bacteria. Glycerol is one of the traditional cryoprotectants used widely to prevent cryoinjury during the cryopreservation of bacteria,although it may be toxic to the cells. To overcome these issues, synthetic antifreeze polymers are also used as cryoprotectants to inhibit ice formation. In the study, we compared the performance of various antifreeze synthetic polymers including poly(vinyl alcohol) (PVA), poly(vinylpyrrolidone), poly(ethylene glycol), and dextran with glycerol, among which PVA performed best on decreasing the ice growth rate.The impacts of glycerol, trehalose, combined with PVA on the survival of S. thermophilus were also explored. Notably,. S. thermophilus stored in 100 mg/mL trehalose and 1 mg/mL PVA +50 mg/mL trehalose combo showed significantly enhanced survival when compared with those in traditional cryoprotectant (20% [v/v] glycerol), which achieved the survival percentage of only 41.03 ± 0.09%. The effects of the freezing temperature and crystallinity on the survival of S. thermophilus were elucidated.


Assuntos
Criopreservação , Gelo , Criopreservação/métodos , Crioprotetores/farmacologia , Congelamento , Glicerol/farmacologia , Polímeros , Trealose/farmacologia
14.
Curr Microbiol ; 80(12): 372, 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37843653

RESUMO

Phage therapy is a promising alternative to control bacterial diseases and the increasing problem of antibiotic resistance. In this sense, this research evaluates the viability of lyophilized vibrio phage vB_Pd_PDCC-1 using trehalose as a preservative excipient at different concentrations (4, 2, 1, and 0.5% w/v) and its potential for phage therapy application against a pathogenic bacteria Vibrio diabolicus in brine shrimp nauplii (Artemia franciscana). The lyophilized phages were stored at 4 and 23 °C and rehydrated using biological sterile saline solution to test their viability at days 1, 15, and 60 post-lyophilization. The results showed that trehalose is beneficial in maintaining the viability of post-lyophilization phages (without titer losses) at 4 °C and even at room temperature (23 °C). When lyophilized phages with 4% w/v trehalose concentration were stored at 23 °C, they had not titer losses among the trials; viability and titer concentration were maintained up to 60 days at log 7. The use of lyophilized phage PDCC-1 increased brine shrimp survival and reduced Vibrio concentrations. The present study has identified trehalose as a promising lyophilization excipient to effectively preserve lyophilized bacteriophages for biotechnological applications and long-term storage.


Assuntos
Bacteriófagos , Vibrio , Trealose/farmacologia , Excipientes , Myoviridae
15.
Dokl Biochem Biophys ; 511(1): 162-165, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37833600

RESUMO

It is known that 20-hydroxyecdysone is one of the most important hormonal regulators of development, reproduction and adaptation to unfavorable conditions in insects. Here, we show for the first time that exogenous 20-hydroxyecdysone increases the content of two main insect carbohydrates, trehalose and glucose, in Drosophila melanogaster females both in normal conditions and under short-term heat stress. It is found that the levels of both trehalose and glucose increase after 39 min of heat exposure and return to their original levels after 1.5 h. A scheme of hormonal regulation of carbohydrate content under heat stress, involving 20-hydroxyecdysone, juvenile hormone, and dopamine, is suggested.


Assuntos
Drosophila melanogaster , Ecdisterona , Animais , Feminino , Ecdisterona/farmacologia , Ecdisterona/fisiologia , Trealose/farmacologia , Resposta ao Choque Térmico , Hormônios Juvenis/fisiologia , Glucose
16.
Drug Dev Res ; 84(8): 1699-1708, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37688413

RESUMO

Dengue fever is an acute febrile disease caused by dengue virus (DENV) infection. Over the past 60 years, DENV has spread throughout tropical regions and currently affects more than 50% of the world's population; however, there are as of yet no effective anti-DENV drugs for clinical treatment. A number of research teams have investigated derivatives of glycolipids as possible agents for the inhibition of DENV. Our objective in this research was to study the antiviral effects of trehalose 6-caprate (TMC), trehalose 6-monolaurate (TML), and trehalose 6-monooleate (TMO), based on reports that the corresponding glycosyl, trehalose, reduces the transmission of Zika virus (ZIKV). We also sought to elucidate the molecular mechanisms underlying inhibition using the RNA isolation and reverse transcription-quantitative polymerase chain reaction, western blot analysis, median tissue culture infectious dose (TCID50 ) assay, and immunofluorescence assay and immunochemistry staining, in vitro. This is the first study to demonstrate the TML-induced inhibition of DENV serotype 2 (DENV-2) in a dose-dependent manner. The inhibitory effects of TML in the pretreated, cotreated, and full-treated groups were confirmed using time of addition assays. We determined that TML restricted viral binding, entry, replication, and release. We also confirmed the efficacy of TML against three clinical isolates of DENV serotypes 1, 3, and 4 (DENV-1, DENV-3, and DENV-4). The findings obtained in this study identify TML as a promising candidate for the development of drugs to treat DENV infection.


Assuntos
Vírus da Dengue , Dengue , Infecção por Zika virus , Zika virus , Humanos , Vírus da Dengue/genética , Dengue/tratamento farmacológico , Dengue/epidemiologia , Zika virus/genética , Infecção por Zika virus/epidemiologia , Trealose/farmacologia , Trealose/uso terapêutico
17.
Int J Mol Sci ; 24(17)2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37686153

RESUMO

Trehalose, a naturally occurring non-toxic disaccharide, has attracted considerable attention for its potential in alleviating oxidative stress in skeletal muscle. In this study, our aim was to elucidate the metabolic mechanisms underlying the protective effects of trehalose against hydrogen peroxide (H2O2)-induced oxidative stress in C2C12 myoblasts. Our results show that both trehalose treatment and pretreatment effectively alleviate the H2O2-induced decrease in cell viability, reduce intracellular reactive oxygen species (ROS), and attenuate lipid peroxidation. Furthermore, using NMR-based metabolomics analysis, we observed that trehalose treatment and pretreatment modulate the metabolic profile of myoblasts, specifically regulating oxidant metabolism and amino acid metabolism, contributing to their protective effects against oxidative stress. Importantly, our results reveal that trehalose treatment and pretreatment upregulate the expression levels of P62 and Nrf2 proteins, thereby activating the Nrf2-NQO1 axis and effectively reducing oxidative stress. These significant findings highlight the potential of trehalose supplementation as a promising and effective strategy for alleviating oxidative stress in skeletal muscle and provide valuable insights into its potential therapeutic applications.


Assuntos
Peróxido de Hidrogênio , Trealose , Trealose/farmacologia , Fator 2 Relacionado a NF-E2 , Metabolômica , Estresse Oxidativo , Mioblastos
18.
Neurosci Lett ; 813: 137418, 2023 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-37549864

RESUMO

Aging causes substantial molecular to morphological changes in the brain. The brain cells are more susceptible towards oxidative damage due to impaired antioxidant defense system. Sirtuin1 (SIRT1) is a crucial cellular survival protein, which its gene has been identified as a direct target of microRNA 132 (miR-132). Trehalose contributes to preventing neuronal damage through several mechanisms. However, little is known about the interactive effects of aging and trehalose on the expression pattern of miR-132 and SIRT1 in the hippocampus. Male Wistar rats were divided into four groups. Two groups of aged (24 months) and young (4 months) rats were administered 2% trehalose solution for 30 days. Two other groups of aged and young rats received regular tap water. At the end of treatment, the levels of Sirt1 mRNA and its protein, malondialdehyde, protein carbonyl content, total antioxidant capacity, tumor necrosis factor α (TNF-α), as well as the expression of miR-132 were measured in the hippocampus. We found that trehalose treatment upregulated the expression of SIRT1 and miR-132. Moreover, administration of trehalose enhanced the level of total antioxidant activity whereas reduced the levels of lipid peroxidation, protein carbonyl content, and TNF-α. In conclusion, our data indicated that trehalose restored antioxidant status and alleviated inflammation in the hippocampus which was probably associated with the upregulation of SIRT1 and miR-132.


Assuntos
MicroRNAs , Sirtuína 1 , Ratos , Masculino , Animais , Sirtuína 1/metabolismo , Antioxidantes/farmacologia , MicroRNAs/metabolismo , Trealose/farmacologia , Trealose/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Carbonilação Proteica , Ratos Wistar , Hipocampo/metabolismo
19.
Artigo em Inglês | MEDLINE | ID: mdl-37622696

RESUMO

BACKGROUND: The purpose of the present study was to study the potential anti-arthritic and antioxidant effects of trehalose in an experimental model of complete Freund's adjuvant (CFA)-induced arthritis. METHODS: Arthritis was induced via subcutaneous injection of CFA (0.1) into the right footpad of each rat. Trehalose (10 mg/kg per day) and indomethacin (5 mg/kg) as a reference drug were intraperitoneally injected into CFA-induced arthritic rats from days 0 to 21. Changes in paw volume, pain responses, arthritic score, and oxidative/antioxidative parameters were determined. RESULTS: Trehalose administration could significantly decrease arthritis scores (p <0.01) and paw edema (p <0.001), and significantly increase the nociceptive threshold (p <0.05) in CFA-induced arthritic rats. Trehalose also significantly reduced the pro-oxidant-antioxidant balance values when compared to CFA treatment alone. In addition, no significant difference was found between the trehalose group and indomethacin as a positive control group. CONCLUSION: The current study suggests that trehalose has a protective effect against arthritis, which may be mediated by antioxidative effects of this disaccharide.


Assuntos
Antioxidantes , Artrite Experimental , Ratos , Animais , Antioxidantes/farmacologia , Trealose/farmacologia , Ratos Wistar , Artrite Experimental/induzido quimicamente , Indometacina/farmacologia , Adjuvante de Freund/efeitos adversos , Modelos Teóricos
20.
Mol Neurobiol ; 60(12): 7253-7273, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37542649

RESUMO

Since the number of aged people will increase in the next years, neurodegenerative diseases, including Parkinson's Disease (PD), will also rise. Recently, we demonstrated that autophagy stimulation with rapamycin decreases dopaminergic neuronal death mediated by oxidative stress in the paraquat (PQ)-induced PD model. Assessing the neurotherapeutic efficacy of autophagy-inducing molecules is critical for preventing or delaying neurodegeneration. Therefore, we evaluated the autophagy inducers metformin and trehalose effect in a PD model. Autophagy induced by both molecules was confirmed in the SH-SY5Y dopaminergic cells by detecting increased LC3-II marker and autophagosome number compared to the control by western blot and transmission electron microscopy. Both autophagy inducers showed an antioxidant effect, improved mitochondrial activity, and decreased dopaminergic cell death induced by PQ. Next, we evaluated the effect of both inducers in vivo. C57BL6 mice were pretreated with metformin or trehalose before PQ administration. Cognitive and motor deteriorated functions in the PD model were evaluated through the nest building and the gait tests and were prevented by metformin and trehalose. Both autophagy inducers significantly reduced the dopaminergic neuronal loss, astrocytosis, and microgliosis induced by PQ. Also, cell death mediated by PQ was prevented by metformin and trehalose, assessed by TUNEL assay. Metformin and trehalose induced autophagy through AMPK phosphorylation and decreased α-synuclein accumulation. Therefore, metformin and trehalose are promising neurotherapeutic autophagy inducers with great potential for treating neurodegenerative diseases such as PD.


Assuntos
Metformina , Neuroblastoma , Doença de Parkinson , Humanos , Animais , Camundongos , Idoso , Doença de Parkinson/tratamento farmacológico , Trealose/farmacologia , Trealose/uso terapêutico , Camundongos Endogâmicos C57BL , Autofagia , Dopamina , Metformina/farmacologia , Metformina/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...